
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 1613–1619

www.elsevier.com/locate/jcp
A fast multipole method for the three-dimensional
Stokes equations

Anna-Karin Tornberg a,b,*, Leslie Greengard a

a Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
b Royal Institute of Technology (KTH), Linne Flow Centre/Numerical Analysis, SE-100 44 Stockholm, Sweden

Received 2 February 2007; accepted 12 June 2007
Available online 5 July 2007
Abstract

Many problems in Stokes flow (and linear elasticity) require the evaluation of vector fields defined in terms of sums
involving large numbers of fundamental solutions. In the fluid mechanics setting, these are typically the Stokeslet (the ker-
nel of the single layer potential) or the Stresslet (the kernel of the double layer potential). In this paper, we present a simple
and efficient method for the rapid evaluation of such fields, using a decomposition into a small number of Coulombic N-
body problems, following an approach similar to that of Fu and Rodin [Y. Fu, G.J. Rodin, Fast solution methods for
three-dimensional Stokesian many-particle problems, Commun. Numer. Meth. En. 16 (2000) 145–149]. While any fast
summation algorithm for Coulombic interactions can be employed, we present numerical results from a scheme based
on the most modern version of the fast multipole method [H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole
algorithm in three dimensions, J. Comput. Phys. 155 (1999) 468–498]. This approach should be of value in both the solu-
tion of boundary integral equations and multiparticle dynamics.
� 2007 Published by Elsevier Inc.
1. Introduction

During the last two decades, a substantial body of work has emerged on fast algorithms for potential the-
ory. The bulk of these have considered the Coulombic or gravitational N-body problem or the solution of
related boundary integral equations. The N-body problem requires evaluations of sums on the form
0021-9
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E-m
F m ¼
XN

n¼1
n 6¼m

f n

kxn � xmk þ
XN

n¼1
n 6¼m

ðn̂n � rnmÞgn

kxn � xmk3
; m ¼ 1; . . . ;N ; ð1Þ
where xm; xn 2 R3, n̂n 2 R3 is an arbitrary orientation vector, and f n; gn 2 R. A typical boundary integral
equation takes the form
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F ðxÞ ¼ arðxÞ þ b
Z

C
Gðx; yÞrðyÞdyþ c

Z
C

d

dny

Gðx; yÞrðyÞdy; ð2Þ
where C is a surface in R3, Gðx; yÞ ¼ 1=kx� yk, d
dny

refers to the normal derivative at the point y, and
a; b; c are constants that depend on the particular boundary condition being imposed. In general, F(x)
is given as data and r is an unknown surface density. In physical terms, the first sum in (1) is the field
due to a collection of charges and the second sum is the field due to a collection of dipoles. Likewise, the
first integral in (2) is the field due to a surface charge distribution (a single layer potential) and the second
integral is the field due to a continuous distribution of normally oriented dipoles (a double layer poten-
tial). Discretizing the integrals in (2) by some quadrature rule, we obtain discrete sums over the quadra-
ture points of the same form as (1).

In short, N-body calculations arise in two main contexts: the evaluation of particle interactions and
the evaluation of layer potentials (often as part of the iterative solution of boundary integral equations).
Since the governing equation is the Laplace equation, we will refer to these as harmonic N-body
calculations.

The straightforward evaluation of F m in (1) for m ¼ 1; . . . ;N clearly requires OðN 2Þ work. There are,
however, a variety of fast algorithms that are capable of reducing that cost to O(N) or OðN log NÞ. These
include fast multipole methods, tree codes, the method of local corrections, multigrid methods, panel clus-
tering methods, particle-in-cell methods, particle-mesh Ewald methods, and pre-corrected FFT methods.
We will not attempt to review the literature on fast algorithms, but refer the reader to a few selected
papers on the fast multipole method (FMM) [1,2,6,8,15], since it is the algorithm we will rely on here.
It is worth noting, in the present context, that both particle-mesh-Ewald methods and pre-corrected
FFT methods have been extended to the case of Stokes flow and used with great effect [10,13]. The prin-
cipal advantage of the FMM is that it is fully adaptive, and handles highly inhomogeneous source distri-
butions as easily as it does homogeneous ones. It has the disadvantage that it is much more complex to
implement efficiently.

1.1. Stokeslets and Stresslets

In Stokes flow and linear elasticity, computations analogous to (1) arise naturally. Both involve vector ver-
sions of the N-body problem. In this short paper, we concentrate on the Stokes problem.

One fundamental solution for the Stokes equations is the Stokeslet
Sijðx; yÞ ¼
dij

jx� yj þ
ðxi � yiÞðxj � yjÞ
jx� yj3

; i; j ¼ 1; 2; 3; ð3Þ
where dij is the Kronecker delta, x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ. The corresponding summation problem is
the calculation of the vector Fm ¼ ðF m

1 ; F
m
2 ; F

m
3 Þ at each source location xm from the formula
F m
i ¼

XN

n¼1
n 6¼m

X3

j¼1

Sijðxm; xnÞf n
j ; i ¼ 1; 2; 3; m ¼ 1; . . . ;N ; ð4Þ
where ffn ¼ ðf n
1 ; f

n
2 ; f

n
3 Þg are the vector source strengths. A second fundamental solution is the Stresslet
Dijðx; y; n̂Þ ¼
X3

k¼1

ðxi � yiÞðxj � yjÞðxk � ykÞn̂k

jx� yj5
; ð5Þ
with n̂ 2 R3 an orientation vector. The corresponding summation problem is to evaluate Gm ¼ ðGm
1 ;G

m
2 ;G

m
3 Þ as

given by
Gm
i ¼

XN

n¼1
n6¼m

X3

j¼1

Dijðxm; xn; n̂nÞgn
j ; i ¼ 1; 2; 3; m ¼ 1; . . . ;N ; ð6Þ
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where n̂n is an orientation vector at the nth source location and fgn ¼ ðgn
1; g

n
2; g

n
3Þg are the vector source

strengths. Fm and Gm can be thought of as velocity fields induced by point forces or surface stresses, respec-
tively [9]. (Integrals involving Sij and Dij are referred to as single and double layer potentials, by analogy with
the electrostatic case).

Several fast multipole methods for these kernels (or the closely related ones of linear elasticity) have been
developed based essentially on expansion of the Green’s function for the biharmonic equation [3,7,8,12,16]. A
clever rearrangement of terms allows for the use of a total of four sets of multipole/local expansion coeffi-
cients. The cost of the method is, therefore, approximately four times that of a harmonic FMM. Recently,
Wang et al. [11] have presented an efficient, parallel implementation for Stokeslet and Stresslet summations
along these lines. However, none of these schemes make direct use of existing ‘‘black-box’’ harmonic FMMs.

Another useful approach, developed by Ying et al. [15], is the kernel independent fast multipole algorithm
that can be applied to essentially any non-oscillatory kernel. This allows for straightforward ‘‘black-box’’
application to the Stokes equations, but at a cost of approximately six to nine scalar FMM calls (three calls
with 3N sources each).

Finally, one can rewrite the Stokeslet and Stresslet summation formulas in such a way that the harmonic
FMM (or any other fast electrostatic method) can be used in ‘‘black-box’’ fashion. This approach was taken
by Wang and LeSar for dislocation dynamics [14], by Fu et al. for linear elasticity [4], and by Fu and Rodin for
Stokes flow [5]. The latter formulation requires four harmonic FMM calls for Stokeslets and twelve harmonic
FMM calls for Stresslets.

Here, we follow the last approach and present a new, simple and efficient decomposition of the Stokeslet
and Stresslet summations into four harmonic N-body problems each, although the Stresslet case requires a
little care (see below). It is, perhaps, worth citing three reasons for choosing to revisit this problem. First,
the reformulation of the Stresslet in terms of harmonic interactions appears to be new. Second, using this
approach, improvements to any fast algorithm for harmonic interactions, such as low-level code optimization,
hardware acceleration, or parallel implementation, become available for fluid dynamic and elasticity applica-
tions. Third, the storage cost of the harmonic FMM is about half that of the biharmonic case, providing some
advantage for large-scale simulations.

2. Decomposition of the stokeslet and stresslet sums

We begin by observing that the Stokeslet (3) can be written as
Sijðx; yÞ ¼ dij � ðxj � yjÞ
o

oxi

� �
1

jx� yj : ð7Þ
From this, we show in Appendix A that the summation in (4) can be written as
F m
i ¼

X3

j¼1

dij � xm
j

o

oxi

� �XN

n¼1
n 6¼m

f n
j

rnm

2
664

3
775þ o

oxi

XN

n¼1
n 6¼m

xn � fn

rnm

; ð8Þ
where rnm ¼ xm � xn and rnm ¼ jrnmj.
That is, to compute F m

i , i ¼ 1; 2; 3, we need to evaluate four harmonic sums over the locations fxng with
source strengths ff n

j g, j ¼ 1; 2; 3 and fxn � fng, respectively. For this, we use the FMM as described in [2],
which returns both the potential and gradient due to a collection of sources. The desired results are then
assembled as indicated in (8).

The Stresslet (5) can be expressed as
Dijðx; y; n̂Þ ¼
1

6

X3

k¼1

dij � ðxj � yjÞ
o

oxi

� �
ðxk � ykÞn̂k

jx� yj3
þ dik � ðxk � ykÞ

o

oxi

� � ðxj � yjÞn̂k

jx� yj3

" #
: ð9Þ
We leave it to the reader to verify this expression. Inserting this into the sum (6), after some algebraic manip-
ulation (Appendix A) we get
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Gm
i ¼

1

6

X3

j¼1

dij � xm
j

o

oxi

� �XN

n¼1
n 6¼m

ðrnm � n̂nÞgn
j

r3
nm

þ
ðrnm � gnÞn̂n

j

r3
nm

� �2
664

3
775

þ 1

6

o

oxi

XN

n¼1
n 6¼m

ðrnm � n̂nÞðxn � gnÞ
r3
nm

þ ðrnm � gnÞðn̂n � xnÞ
r3
nm

� �
: ð10Þ
By comparison with (1) it is clear that to compute Gm
i , i ¼ 1; 2; 3 requires four harmonic FMM calls, each with

2N dipole sources. For the first three calls, the orientation vectors are fn̂ng with strength fgn
jg and fgng with

strength fn̂n
jg, j ¼ 1; 2; 3. For the fourth call, the orientation vectors are fn̂ng with strength fxn � gn

jg and fgng
with strength fxn � n̂ng. At first glance, it might appear that the net cost would be proportional to that of 8
FMM calls, since we have doubled the number of sources. In a properly implemented FMM, however, one
can have 2N sources and N targets and the net cost should be about that of 6 FMMs. We have chosen to mod-
ify the FMM code slightly to further reduce the cost as follows.

Remark 2.1. (requires some familiarity with the FMM) Two simple changes have been made. First, in the
Stresslet case, when multipole expansions are formed, we incorporate the contributions from both sets of
dipoles. The remaining steps of the far field calculation are the same as if there were only N sources. Second, in
both the Stokeslet and Stresslet cases, we disable the nearest neighbor calculations in the first three FMM calls.
In the fourth call, we use the original formulas (3) and (5) to compute nearby direct interactions only once.

The effect of these changes, as will be clear from the numerical results, is that the net cost in each case is
approximately that of three FMM calls with N sources. We are aware that this violates one of our arguments
for using harmonic FMMs, but were unable to resist.
3. Numerical results

In this section, we present some timing results for the FMM-based Stokeslet and Stresslet sums described
by (4) and (6). All calculations were carried out on a laptop computer with a 1.2 GHz Pentium M processor
and 500 Mb of RAM. We also present the time for an efficient implementation of direct summation, which
uses only one square root evaluation to generate all nine matrix entries in (3) or (5). For the sake of compar-
ison, we also present timings of the FMM and the direct method for simple Coulombic interactions. In the
tables below, N denotes the number of sources, Prec denotes the number of digits of accuracy requested from
the FMM, T S

FMM denotes the time required by the FMM for Stokeslets or Stresslets, and T S
dir denotes the direct

time required for Stokeslets or Stresslets. T H
FMM denotes the time required by the harmonic FMM for simple

charge sources in the Stokeslet table and for simple dipole sources in the Stresslet table. T H
dir denotes the time

required by the direct method for the analogous summations.
To test the performance of the method on both homogeneous and inhomogeneous distributions, we carry

out one set of experiments with sources distributed randomly with a uniform probability in the unit cube
(rand), and another with sources distributed on the surface of a cylinder with unit radius and unit height
(cyl). We measure the L2 errors at N/200 sources by comparison with the direct calculation and denote the
maximum of these errors for the two cases (rand, cyl) by EStokes, EStress, and Eharmonic. The direct timings
are estimated from actual timings on N/200 sources.

There are a few things to note from the results. First, the FMM scales approximately linearly, as expected.
The timings are somewhat erratic because of the fact that the adaptive FMM builds a different data structure
at each precision for each source distribution. Second, the work required for Stokeslets and Stresslets is about
three times greater than for the corresponding (charge or dipole) harmonic interactions. With our current
implementation, the breakeven point for the FMM is about 2000 for three digits, 4000 for six digits, and
5000 for nine digits.

This is not as competitive as for the harmonic case, largely because the direct calculation for Stokeslets and
Stresslets has a smaller constant associated with it. Only one square root evaluation is needed to obtain all
nine matrix entries and the net time ends up being less than twice that for the harmonic case.



Table 1
Timing results for Stokeslet summation. See text for explanation

N Prec T S
FMM T S

dir T H
FMM T H

dir EStokes Eharmonic

Rand Cyl Rand Cyl

4000 3 1.5 1.3 2.8 0.8 0.9 1.8 3.2 · 10�4 3.3 · 10�4

40,000 3 11.3 10.4 285 3.9 3.6 172 3.3 · 10�4 5.4 · 10�4

400,000 3 115.1 79.0 28,500 39.8 26.3 17,200 3.2 · 10�4 1.4 · 10�3

4000 6 2.2 2.0 2.8 0.6 1.2 1.8 1.9 · 10�7 1.6 · 10�7

40,000 6 23.6 21.0 285 8.1 6.7 172 1.9 · 10�7 3.3 · 10�7

400,000 6 327.7 261.2 28,500 108.5 83.4 17,200 1.8 · 10�7 6.7 · 10�7

4000 9 2.9 3.1 2.8 0.9 1.6 1.8 9.4 · 10�11 9.2 · 10�11

40,000 9 39.7 29.0 285 12.4 10.7 172 9.5 · 10�11 2.5 · 10�10

400,000 9 398.9 378.8 28,500 140.8 173.2 17,200 9.8 · 10�11 3.1 · 10�10

See text for explanation.

Table 2
Timing results for Stresslet summation

N Prec T S
FMM T S

dir T H
FMM T H

dir EStokes Eharmonic

Rand Cyl Rand Cyl

4000 3 1.5 0.9 3 0.7 0.8 2.2 3.3 · 10�3 7.9 · 10�4

40,000 3 14.5 12.9 300 3.9 4.2 230 6.1 · 10�4 1.9 · 10�3

400,000 3 134.6 102.7 30,000 47.6 30.3 23,000 1.9 · 10�3 3.5 · 10�4

4000 6 2.6 1.9 3 1.1 1.2 2.2 3.7 · 10�6 5.3 · 10�7

40,000 6 29.6 28.4 300 9.9 7.6 230 8.6 · 10�7 1.4 · 10�6

400,000 6 487.5 414.7 30,000 134.4 103.8 23,000 1.9 · 10�6 2.3 · 10�7

4000 9 3.7 3.6 3 1.5 1.7 2.2 1.8 · 10�9 3.4 · 10�10

40,000 9 46.6 33.4 300 15.0 15.7 230 5.5 · 10�10 5.8 · 10�10

400,000 9 508.0 522.2 30,000 173.7 146.7 23,000 1.2 · 10�9 7.7 · 10�11

See text for explanation.
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In any event, with 400,000 sources at six digits of accuracy, speedup factors of 100 and 70 are obtained for
Stokeslets and Stresslets, respectively. More generally, the time for Stokeslet summation is about 30% faster
than for Stresslet summation. The reasons for this are somewhat complex and involve detailed aspects of the
FMM implementation. We believe this additional cost could be eliminated with more detailed changes to the
code. We have chosen not to make these changes in order to hold to our original aim, which was to use black
box harmonic FMMs. We have already violated that notion (Remark 2.1), because the change was so minor.
As a matter of full disclosure, using unmodified, black box FMMs for 40,000 Stokeslets at 6 digits of accuracy
requires 31.8 s, instead of the 23.6 s indicated in Table 1. Not surprisingly, this is very close to four times the
cost of the harmonic FMM. Using black box FMMs for 40,000 Stresslets at 6 digits of accuracy requires about
60 s instead of the 29.6 s indicated in Table 2. As expected, this is very close to six times the cost of the cor-
responding harmonic FMM (see paragraph above Remark 2.1).

4. Conclusions

In this paper, we have presented a fast multipole method (FMM) for Stokeslet and Stresslet calculations,
based on the use of the harmonic FMM. Each of the Stresslet and Stokeslet summations requires four calls to
such an FMM, which has been trivially modified so that the net cost scales like three harmonic interactions. A
feature of our approach is that additional improvements to any fast algorithm for harmonic interactions, from
code optimization to specialized hardware, become immediately available for Stokesian particle dynamics and
integral equation methods in fluid dynamics.
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The FMM requirements for linear elasticity are slightly different than those presented here. While the
kernel for the single layer potential is essentially the Stokeslet, the kernel for the double layer potential
differs somewhat from the fluid Stresslet. Nevertheless, as already shown in [4,14], it is possible to
develop a fast algorithm using only harmonic FMMs. Analytic manipulations like those presented in
the Appendix can reduce the total number of harmonic N-body problems required and will be reported
at a later date.
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Appendix A.

From the formula for the Stokeslet in (7), we can write
X3

j¼1

Sijðx; yÞfj ¼
X3

j¼1

dij � xj
o

oxi

� �
fj

jx� yj þ
X3

j¼1

yj
o

oxi

fj

jx� yj

¼
X3

j¼1

dij � xj
o

oxi

� �
fj

jx� yj

� �
þ o

oxi

y � f
jx� yj : ð11Þ
Inserting this into (4), we get
F m
i ¼

XN

n¼1
n 6¼m

X3

j¼1

Sijðxm; xnÞf n
j ¼

XN

n¼1
n6¼m

X3

j¼1

dij � xm
j

o

oxi

� �
f n

j

rnm

� �
þ o

oxi

xn � fn

rnm

" #
; ð12Þ
where rnm ¼ jxm � xnj. Interchanging the order of summation, we obtain the result in (8).
Using the expression for the Stresslet given in (9), we get
X3

j¼1

Dijðx; y; n̂Þgj ¼
1

6

X3

j¼1

X3

k¼1

dij � xj
o

oxi

� � ðxk � ykÞn̂kgj

jx� yj3

"
þ dik � xk

o

oxi

� � ðxj � yjÞn̂kgj

jx� yj3

þ o

oxi

ðxk � ykÞn̂kyjgj

jx� yj3
þ o

oxi

ðxj � yjÞn̂kykgj

jx� yj3

#

¼ 1

6

X3

j¼1

X3

k¼1

dij � xj
o

oxi

� � ðxk � ykÞn̂kgj

jx� yj3
þ ðxk � ykÞn̂jgk

jx� yj3

( )"

þ o

oxi

ðxk � ykÞn̂kyjgj

jx� yj3
þ
ðxk � ykÞgkn̂jyj

jx� yj3

( )#
;

where we have swapped the dummy indices j and k in the second and fourth terms after the second equality
sign. We can now carry out the sum over k, and write
X3

j¼1

Dijðx; y; n̂Þgj ¼
1

6

X3

j¼1

dij � xj
o

oxi

� � ððx� yÞ � n̂Þgj

jx� yj3
þ ððx� yÞ � gÞn̂j

jx� yj3

( )

þ 1

6

o

oxi

ððx� yÞ � n̂Þðy � gÞ
jx� yj3

þ ððx� yÞ � gÞðn̂ � yÞ
jx� yj3

( )
:

Inserting this into the sum in (6), we get
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Gm
i ¼

1

6

XN

n¼1
n 6¼m

X3

j¼1

dij � xm
j

o

oxi

� � ðrnm � n̂nÞgn
j

r3
nm

þ
ðrnm � gnÞn̂n

j

r3
nm

� �

þ 1

6

XN

n¼1
n6¼m

o

oxi

ðrnm � n̂nÞðxn � gnÞ
r3
nm

þ ðrnm � gnÞðn̂n � xnÞ
r3
nm

� �
; ð13Þ
where we have introduced the notation rnm ¼ xm � xn, and rnm ¼ jrnmj. Moving in the sum over n, we obtain
the result in (10).
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